1. Samimi M, Mansouri E. Efficiency evaluation of Falcaria vulgaris biomass in Co(II) uptake from aquatic environments: characteristics, kinetics and optimization of operational variables. International Journal of Phytoremediation. 2024; 26(4).
https://doi.org/10.1080/15226514.2023.2250462PMid:37622683
|
2. Azimi N, Azimi P, Samimi M, Mansouri Jalilian T. Ultrasonic-assisted adsorption of Ni(II) ions from aqueous solution onto Fe3O4 nanoparticles. Advances in Nanochemistry. 2019;1(2):66-72.
|
|
3. Igwe O, Adepehin EJ, Iwuanyanwu C, Una CO. Risks associated with the mining of Pb-Zn minerals in some parts of the Southern Benue trough, Nigeria. Environmental monitoring and assessment. 2014;186:3755-3765. https://doi.org/10.1007/s10661-014-3655-3PMid:24577621
|
|
4. Samimi M. Efficient biosorption of cadmium by Eucalyptus globulus fruit biomass using process parameters optimization. Global Journal of Environmental Science and Management. 2024;10(1):27-38.
|
|
5. Samimi M, Shahriari-Moghadam M. Isolation and identification of Delftia lacustris Strain-MS3 as a novel and efficient adsorbent for lead biosorption: Kinetics and thermodynamic studies, optimization of operating variables. Biochemical Engineering Journal; 2021;173:108091. https://doi.org/10.1016/j.bej.2021.108091
|
|
6. Lu T, Chen WQ, Ma Y, Qian Q, Jia J. Environmental impacts and improvement potentials for copper mining and mineral processing operations in China. Journal of Environmental Management. 2023; 342:118178. https://doi.org/10.1016/j.jenvman.2023.118178PMid:37196612
|
|
7. Benson A, Akinterinwa A, Milam C, Hammed AM. Chemical profiling of minerals and elemental composition of rock and soil samples from Bakin Dutse Hills, Madagali, Adamawa State Nigeria. Eurasian Journal of Science and Technology. 2023; 3(4):238-251.
|
|
8. Shu XH, Zhang Q, Lu GN, Yi XY, Dang Z. Pollution characteristics and assessment of sulfide tailings from the Dabaoshan Mine, China. International biodeterioration and biodegradation. 2018;128:122-128. https://doi.org/10.1016/j.ibiod.2017.01.012
|
|
9. Wang C, Jing J, Qi Y, Zhou Y, Zhang K, Zheng,Y, Zhai Y, Liu F. Basic characteristics and environmental impact of iron ore tailings. Frontiers in Earth Science. 2023;11:1181984. https://doi.org/10.3389/feart.2023.1181984
|
|
10. Helser J, and V. Cappuyns, Trace elements leaching from pbzn mine waste (plombières, belgium) and environmental implications. Journal of Geochemical Exploration. 2021; 220:106659. https://doi.org/10.1016/j.gexplo.2020.106659
|
|
11. Freitas H, M Prasad, J Pratas. Analysis of serpentinophytes from north-east of Portugal for trace metal accumulation--relevance to the management of mine environment. Chemosphere. 2004;54(11):1625-1642. https://doi.org/10.1016/j.chemosphere.2003.09.045PMid:14675842
|
|
12. Cacciuttolo C, Cano D. Environmental impact assessment of mine tailings spill considering metallurgical processes of gold and copper mining: case studies in the Andean countries of Chile and Peru. Water. 2022;14(19): 3057. https://doi.org/10.3390/w14193057
|
|
13. Samimi M, Shahriari-Moghadam M. The Lantana camara L. stem biomass as an inexpensive and efficient biosorbent for the adsorptive removal of malachite green from aquatic environments: kinetics, equilibrium and thermodynamic studies. International Journal of Phytoremediation. 2023; 25(10):1328-1336. https://doi.org/10.1080/15226514.2022.2156978PMid:37154395
|
|
14. Moghadam H, Samimi, M. Effect of condenser geometrical feature on evacuated tube collector basin solar still performance: productivity optimization using a Box-Behnken design model. Desalination. 2022;542:116092. https://doi.org/10.1016/j.desal.2022.116092
|
|
15. Samimi M, Zakeri M, Alobaid F, Aghel B. A Brief Review of Recent Results in Arsenic Adsorption Process from Aquatic Environments by Metal-Organic Frameworks: Classification Based on Kinetics, Isotherms and Thermodynamics Behaviors. Nanomaterials. 2023;13(1):60. https://doi.org/10.3390/nano13010060PMid:36615970 PMCid:PMC9823661
|
|
16. Samimi, M, Shahriari-Moghadam M. Optimal conditions for the biological removal of ammonia from wastewater of a petrochemical plant using the response surface methodology. Global Journal of Environmental Science and Management. 2018;4(3):315-324.
|
|
17. Thakuria A, Singh KK, Dutta A, Corton E, Stom D, Barbora L, Goswami, P. Phytoremediation of toxic chemicals in aquatic environment with special emphasis on duckweed mediated approaches. International Journal of Phytoremediation. 2023;25(13):1699-1713. https://doi.org/10.1080/15226514.2023.2188423PMid:36941761
|
|
18. Yan A, Wang Y, Tan SN, Mohd Yusof ML, Ghosh S, Chen Z. Phytoremediation: a promising approach for revegetation of heavy metal-polluted land. Frontiers in Plant Science. 2020;11:359. https://doi.org/10.3389/fpls.2020.00359PMid:32425957 PMCid:PMC7203417
|
|
19. Azizi M, Faz A, Zornoza R, Martinez-Martinez S, Acosta JA. Phytoremediation Potential of Native Plant Species in Mine Soils Polluted by Metal (loid) s and Rare Earth Elements. Plants. 2023;12(6):1219. https://doi.org/10.3390/plants12061219PMid:36986908 PMCid:PMC10058974
|
|
20. Lorestani B, Cheraghi M, Yousefi N. Phytoremediation potential of native plants growing on a heavy metals contaminated soil of copper mine in Iran. International Journal of Geological and Environmental Engineering. 2011;5(5):299-304.
|
|
21. Hasnaoui SE, Fahr M, Keller C, Levard C, Angeletti B, Chaurand P, Triqui ZEA, Guedira A, Rhazi L, Colin F, Smouni, A. Screening of native plants growing on a Pb/Zn mining area in eastern Morocco: Perspectives for phytoremediation. Plants. 2020;9(11):1458. https://doi.org/10.3390/plants9111458PMid:33137928 PMCid:PMC7693513
|
|
22. Hosseinniaee S, Jafari M, Tavili A, Zare S, Cappai G. De Giudici G. Perspectives for phytoremediation capability of native plants growing on Angouran Pb-Zn mining complex in northwest of Iran. Journal of Environmental Management. 2022;315:115184. https://doi.org/10.1016/j.jenvman.2022.115184PMid:35523070
|
|
23. Munishi LK, Ndakidemi PA, Blake W, Comber S, Hutchinson TH. Accumulation and bioconcentration of heavy metals in two phases from agricultural soil to plants in Usangu agroecosystem-Tanzania. Heliyon. 2021;7(7): e07514. https://doi.org/10.1016/j.heliyon.2021.e07514PMid:34296014 PMCid:PMC8282977
|
|
24. Naz R, Khan MS, Hafeez A, Fazil M, Khan MN, Ali B, Javed MA, Imran M, Shati AA, Alfaifi MY, Elbehairi SEI, Ahmed AE. Assessment of phytoremediation potential of native plant species naturally growing in a heavy metal-polluted industrial soils. Brazilian Journal of Biology. 2022;26:84:e264473. https://doi.org/10.1590/1519-6984.264473PMid:36169410
|
|
25. Samimi M, Mohammadzadeh E, Mohammadzadeh A. Rate enhancement of plant growth using Ormus solution: optimization of operating factors by response surface methodology. International Journal of Phytoremediation, 2023; 25(12):1636-1642. https://doi.org/10.1080/15226514.2023.2179014PMid:36850037
|
|
26. Safari M, Shahriari Moghadam M, Samimi M, Azizi Z. Study of the Optimal Conditions for (Zn+2) Removal Using the Biomass of Isolated Bacteria from Ravang Mine. Iranian Journal of Soil and Water Research, 2019;50(1): 149-160.(Persian)
|
|
27. Kafle A, Timilsina A, Gautam, A, Adhikari K, Bhattarai A, Aryal N. Phytoremediation: Mechanisms, plant selection and enhancement by natural and synthetic agents. Environmental Advances. 2022;8:100203. https://doi.org/10.1016/j.envadv.2022.100203
|
|
28. Onjefu SA, Shaningwa F, Lusilao J, Abah J, Hess E, Kwaambwa HM. Assessment of heavy metals pollution in sediment at the Omaruru River basin in Erongo region, Namibia. Environmental Pollutants and Bioavailability. 2020;32(1):187-193. https://doi.org/10.1080/26395940.2020.1842251
|
|
29. Motamedi J, Ahmadzadeh N, Alijanpoor A, Shydai karkaj E. Ecological and morphological characteristics of Verbascum speciosum Schrader. in the mountainous rangelands of Sahand. Journal of Rangeland. 2019;13(1):76-89.(Persian).
|
|
30. Vahid Karimian V, Wahhabi M, Rostakhiz J, Nodehi N. Investigation of habitat characteristics of Verbascum songaricum schrenk in rangeland ecosystems of zagros. Plant Ecosystem Conservation. 2016;4(8):88-102.(Persian).
|
|
31. Montazeri F, Reza Tamartash R, Tatian MR, Hojati M. Potential of rangeland species Astragalus globiflorus and Acantholimon hohenackeri in heavy metals absorption (Case study: rangelands around the Firoozkouh cement factory). 2018;25(2):278-288.(Persian).
|
|
32. Safaei MH, Bashari, and H.A. Shirmardi. Evaluating the Effects of Study Scale on Spatial Patterns of three Range Plant Species Using Quadrate Indices and Point Pattern Analysis in Chaharmahal- Bakhtirai Province Rangelands. Iranian Journal of Applied Ecology. 2016;5(17):37-49.(persian). https://doi.org/10.18869/acadpub.ijae.5.17.37
|
|
33. Pahlevani A. Study of the genus Euphorbia and importance of its species in Iran with emphasis on biodiversity and their conservation status. Rostaniha.2022;1(64):59-78.(Persian)
|
|
34. Xiao WL, Luo CL, Chen YH, Shen ZG, Li XD. Bioaccumulation of heavy metals by wild plants growing on copper mine spoils in China. Communications in soil science and plant analysis. 2008;39(3-4):315-328. https://doi.org/10.1080/00103620701826415
|
|
|
|
36. Castaňares E, Lojka B. Potential hyperaccumulator plants for sustainable environment in tropical habitats. in IOP Conference Series: Earth and Environmental Science. 2020. IOP Publishing. https://doi.org/10.1088/1755-1315/528/1/012045
|
|
37. Singh G, M Bhati, Growth of Dalbergia sissoo in desert regions of western India using municipal effluent and the subsequent changes in soil and plant chemistry. Bioresource Technology. 2005;96(9):1019-1028. https://doi.org/10.1016/j.biortech.2004.09.011PMid:15668198
|
|
|
|
39.Reeves RD, Baker AJ, Jaffré T, Erskine PD, Echevarria G, van Der Ent A. A global database for plants that hyperaccumulate metal and metalloid trace elements. New Phytologist. 2018;218(2):407-411. https://doi.org/10.1111/nph.14907PMid:29139134
|