تعهد نامه

نوع مقاله : مقالات پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، مهندسی منابع طبیعی- محیط زیست، گرایش آلودگی‌های محیط زیست، موسسه آموزش عالی خردگرایان مطهر، مشهد، ایران.

2 دکتری بیوتکنولوژی محیط زیست، عضو هیئت علمی ‌و مدیر گروه محیط زیست، موسسه آموزش عالی خردگرایان مطهر، مشهد، ایران.

3 دکتری سیستم های حمل و نقل، دانشگاه فنی لیسبون، پرتغال، لیسبون، پرتقال

چکیده

زمینه و هدف: با رشد جمعیت در شهرها و افزایش رشد صنعت و تکنولوژی، آلودگی صوت همواره رو به افزایش است. بروز بیماری کرونا و ایجاد محدودیت‌های ناشی از آن در دنیا و ایران از جمله شرایطی بود که باعث ایجاد تغییرات شدیدی در زندگی روزمره مردم گردید که فرصت ارزیابی تغییرات محیط صوتی را فراهم نمود. لذا این مطالعه با هدف بررسی تغییرات تراز صدا در یکی از تقاطعات مهم شهر مشهد در قبل از شیوع بیماری و در زمان ایجاد محدودیت‌های ناشی از آن انجام شده است.

مواد و روش‌ها: این مطالعه در ابتدا به بررسی وضعیت تراز معادل صوت به تفکیک ( فروردین ماه 1398 و 1399) در چهار راه شهدای مشهد بدون در نظر گرفتن هرگونه شرایط خاص پرداخته و در بخش دوم مقایسه شاخص‌های مختلف صوت در بازه‌های زمانی مختلف، بر اساس آنالیز آماری ویلکاکسون و با استفاده از نرم افزار  SPSS، نسخه 22 در قبل از بروز بیماری (فروردین 1398) و در زمان ایجاد محدودیت‌های ناشی از شیوع آن (فروردین 1399) انجام شد.

یافته‌ها: در بخش اول مطالعه میانگین Leq ساعتی در فروردین 1398و 1399 به ترتیب70/48 و 70/39 دسی‌بل بود و نتایج بخش دوم حاکی از معنادار بودن تفاوت در میانگین تراز معادل صوت در دو بازه مطالعاتی می‌باشد. 
تراز معادل حداکثر (LMax) و حداقل (Lmin) در زمان شیوع کرونا نسبت به زمان قبل از بیماری به ترتیب0/16 و 0/08دسی‌بل کاهش یافته است. در ساعات منع تردد شبانه یعنی 21 الی 03 شب در فروردین 1399 نیز میزان تراز معادل صدا به میزان 0/09 دسی‌بل نسبت به سال 1398 کاهش پیدا کرده است. 

نتیجه‌گیری: نتایج این مطالعه نشان داد که تقاطع چهارراه شهدای مشهد در زمان قبل از بروز بیماری از تراز معادل صوتی بالاتر از حد استانداردهای ملی بوده است. این در حالی است که در سال شیوع بیماری به‌دلیل کاهش حجم فعالیت‌های اقتصادی در زمان اوج محدودیت‌های کرونایی، میزان آلودگی صوتی اگرچه نسبت به سال 1398 کاهش داشته است، اما تراز معادل صوت همچنان نسبت به استانداردهای سازمان حفاظت محیط زیست بالاتر بود و به عبارتی آلودگی صوت در تقاطع مذکور همچنان وجود داشته است. به نظر می‌رسد بررسی دلایل این موضوع نیاز به انجام تحقیقات بیشتر مانند مدل‌سازی ترافیکی، تعیین سیاهه انتشار آلودگی صوت، بررسی رابطه بین کاربری‌ها و آلودگی صدا و تاثیر شرایط آب و هوایی بر میزان تراز صدا دارد. 

کلیدواژه‌ها

عنوان مقاله [English]

Investigating changes in sound level before emergence of covid-19 and during the restrictions due to its outbreak in the city of Mashhad (Case study: Shohada Crossroads)

نویسندگان [English]

  • Rahele Valizadeh Ardalan 1
  • Mitra Mohammadi 2
  • Mohammad Sadegh Bahadori 3

1 Master's student Of Department of Environmental Science, Kheradgarayn Motahar Institute of Higher Education, Mashhad, Iran.

2 PhD in Environmental Biotechnology, Member of the Faculty of Department of Environmental Science, Kheradgarayn Motahar Institute of Higher Education, Mashhad, Iran.

3 Department of Civil Engineering and Transportation, University of Lisbon, Portugal

چکیده [English]

Background and Purpose: Increasing population growth and technological advancements in cities inevitably result in rising noise pollution levels. The emergence of the coronavirus disease worldwide, including Iran, has significantly altered people's daily lives. This has presented a unique opportunity to assess changes in sound levels. Therefore, this study aims to investigate sound level variations before the outbreak and during the COVID-19 restrictions at a pivotal intersection in Mashhad.

Materials and Methods: The initial segment of this study examined the sound equivalent level in April 2018 and 2019 without considering any specific circumstances at the Shohada crossroad. In the second segment, employing SPSS22 software and the Wilcoxon test, we compared the alterations in various sound level indicators before the disease prevalence (April 2018) and during the restrictions (April 2019).

Results: The results of the first part of the study revealed that the hourly equivalent sound level (Leq) in April 2018 and 2019 was 70.48 and 70.39 dB, respectively. The results of the second part indicated a significant difference between the two periods under investigation in terms of equivalent sound levels. The maximum and minimum sound equivalent levels (LMax, Lmin) reduction during the disease outbreak compared to the pre-outbreak period was 0.16 and 0.08 dB, respectively. Additionally, during the night curfew hours (21-03) in April 2019, the sound equivalent level decreased by 0.09 dB compared to 2018.
 

Conclusion: The findings of this study demonstrate that the equivalent sound level at the Shohada crossroad in Mashhad exceeded national standards before the disease prevalence. However, noise pollution levels have decreased due to decreased economic activities during the outbreak and the associated restrictions. Nonetheless, the equivalent sound level still surpasses the established standards, indicating that noise pollution at the mentioned intersection persists. Further research is warranted on this subject, encompassing traffic modeling, noise pollution emission inventories, establishing links between land use patterns and noise pollution, and the influence of weather conditions on sound levels.

کلیدواژه‌ها [English]

  • "Noise Pollution
  • " "Social Restriction
  • " "Coronavirus
  • " "Equivalent Noise Level
  • " "Wilcoxon Test"
1- Basu B. Murphy E. Molter A. & et al. Investigating changes in noise pollution due to the COVID-19 lockdown: The case of Dublin, Ireland. Sustainable Cities and Society 2021 Feb 1; 65:102597.
https://doi.org/10.1016/j.scs.2020.102597
 
2- Jarosińska D. Héroux MÈ. Wilkhu P. & et al. Development of the WHO environmental noise guidelines for the European region: an introduction. International journal of environmental research and public health 2018 Apr;15(4):813.
https://doi.org/10.3390/ijerph15040813
PMid:29677170 PMCid:PMC5923855
 
3- Kim K. Shin J. Oh M. Jung JK. Economic value of traffic noise reduction depending on residents' annoyance level. Environmental Science and Pollution Research 2019 Mar 8; 26:7243-55.
https://doi.org/10.1007/s11356-019-04186-2
PMid:30656585
 
4- Oh M. Shin K. Kim K. Shin J. Influence of noise exposure on cardiocerebrovascular disease in Korea. Science of the Total Environment 2019 Feb 15;651:1867-76.
https://doi.org/10.1016/j.scitotenv.2018.10.081
PMid:30317174
 
5- Said MA. El-Gohary OA. Effect of noise stress on cardiovascular system in adult male albino rat: implication of stress hormones, endothelial dysfunction and oxidative stress. General physiology and biophysics 2016 May 13;35(3):371-7.
https://doi.org/10.4149/gpb_2016003
PMid:27174896
 
6- Hornberg J. Haselhoff T. Lawrence BT. & et al. Impact of the COVID-19 lockdown measures on noise levels in urban areas A pre/during comparison of long term sound pressure measurements in the Ruhr Area, Germany. International Journal of Environmental Research and Public Health 2021 Apr 27;18(9):4653.
https://doi.org/10.3390/ijerph18094653
PMid:33925635 PMCid:PMC8125542
 
7- Asdrubali F. Brambilla G. Noise Mapping Special Issue: The noise climate at the time of SARS-CoV-2 Virus/COVID-19 Disease. Noise Mapping 2021;8(1): 204-206. https://doi.org/10.1515/noise-2021-0015
https://doi.org/10.1515/noise-2021-0015
 
8- Mishra A. Das S. Singh D. Maurya AK. Effect of COVID-19 lockdown on noise pollution levels in an Indian city: a case study of Kanpur. Environmental Science and Pollution Research 2021 Sep;28:46007-19.
https://doi.org/10.1007/s11356-021-13872-z
PMid:33884552 PMCid:PMC8060123
 
9- Joshi,KK. Pokhriyal EA. Impact of Coronavirus on Noise Pollution in the Himalayan City of Dehradun: A Case Study. Rrjob 2021; 9(3).
 
10- Aletta F. Brinchi S. Carrese S. & et al. Analysing urban traffic volumes and mapping noise emissions in Rome (Italy) in the context of containment measures for the COVID-19 disease. Noise Mapping 2020 Aug 3;7(1):114-22.
https://doi.org/10.1515/noise-2020-0010
 
11- Rumpler R. Venkataraman S. Göransson P. Noise measurements as a proxy to evaluating the response to recommendations in times of crisis: An update analysis of the transition to the second wave of the CoViD-19 pandemic in Central Stockholm, Sweden. The Journal of the Acoustical Society of America 2021 Mar 1;149(3):1838-42.
https://doi.org/10.1121/10.0003778
PMid:33765773 PMCid:PMC8023269
 
12- Asensio C. Pavón I. De Arcas G. Changes in noise levels in the city of Madrid during COVID-19 lockdown in 2020. The Journal of the Acoustical Society of America 2020 Sep 1;148(3):1748-55.
https://doi.org/10.1121/10.0002008
PMid:33003833 PMCid:PMC7857494
 
13- Munoz P. Vincent B. Domergue C. & et al. Lockdown during COVID-19 pandemic: Impact on road traffic noise and on the perception of sound environment in France. Noise Mapping. 2020 Dec 17;7(1):287-302.
https://doi.org/10.1515/noise-2020-0024
 
14- Pagès RM. Alías F. Bellucci P. & et al. Noise at the time of COVID 19: The impact in some areas in Rome and Milan, Italy. Noise Mapping 2020 Nov 28;7(1):248-64.
https://doi.org/10.1515/noise-2020-0021
 
15- Zambon G. Confalonieri C. Angelini F. Benocci R. Effects of COVID-19 outbreak on the sound environment of the city of Milan, Italy. Noise Mapping 2021 Mar 23;8(1):116-28.
https://doi.org/10.1515/noise-2021-0009
 
16- Bartalucci C. Borchi F. Carfagni M. Noise monitoring in Monza (Italy) during COVID-19 pandemic by means of the smart network of sensors developed in the LIFE MONZA project. Noise Mapping 2020 Oct 17;7(1):199-211.
https://doi.org/10.1515/noise-2020-0017
 
17- General Directorate of Cultural Heritage, Handicrafts and Tourism of Khorasan Razavi Province, Statistical calendar;2022
 
18- Emamjomeh MM. Nikpay A. Safari Variani A. Study of noise pollution in Qazvin, 2010 (Persian). The Journal of Qazvin University of Medical Sciences 2011; 15(1):63-70.
 
19- Moasheri N. Monazzam Esmaeelpoore MR. Abolhasannejad V. & et al. Assessment of noise pollution indices in Birjand old districts in 2010. (Persian). Journal of Birjand University of medical sciences 2012 Dec 15;19(4):439-47.
 
20- Yari AR. Dezhdar B. Koohpaei A. & et al. Evaluation of traffic noise pollution and control solutions offering: a case study in Qom, Iran. (Persian). Journal of Sabzevar University of Medical Sciences 2016 Nov 21;23(4):600-7.
 
21- Sultana A. Paul AK. Nessa MU. The status of noise pollution in the major traffic intersections of Khulna Metropolitan City in Bangladesh and its possible effect on noise-exposed people. European Journal of Environment and Earth Sciences 2020 Sep 14;1(5).
https://doi.org/10.24018/ejgeo.2020.1.5.58
 
22- Al Ghonamy AI. Analysis and evaluation of road traffic noise in Al-Dammam: A business city of the eastern province of KSA. Journal of Environmental Science and Technology 2010 Jan 1;3(1):47-55.
https://doi.org/10.3923/jest.2010.47.55
 
23- Morillas JB. Escobar V. Sierra JM. & et al. An environmental noise study in the city of Cáceres, Spain. Applied acoustics 2002 Oct 1;63(10):1061-70.
https://doi.org/10.1016/S0003-682X(02)00030-0
 
24- Ghanbari M. Nadafi K. Mosaferi M. & et al. Noise Pollution Evaluation in Residential and Residential Commercial Areas in Tabriz-Iran. (Persian). Iranian journal of health & environment 2011 Oct 1;4(3).
 
25- Mohammadi AA. Alidadi H. Delkhosh MB. & et al. Noise Pollution Measurement in Crowded Areas of Neyshabur during primary Three monthes of 2015. Journal of Research in Environmental Health. 2017 Feb 19;2(4):276-84.
 
26- Sakagami K. A note on the acoustic environment in a usually quiet residential area after the 'state of emergency'declaration due to COVID-19 pandemic in Japan was lifted: Supplementary survey results in post-emergency situations. Noise Mapping 2020 Oct 1;7(1):192-8.
https://doi.org/10.1515/noise-2020-0016
 
27- AlsinaPagès R M. Bergadà P. Martínez Suquía C. Changes in the soundscape of Girona during the COVID lockdown. Acoustical Society of America 2021; 149(5), 3416-3423.‏
https://doi.org/10.1121/10.0004986
PMid:34241134 PMCid:PMC8176783
 
28- Rodríguez R. Machimbarrena M. Tarrero A I. Environmental noise evolution during COVID-19 state of emergency: evidence of Peru's need for action plans. Acoustics MDPI 2022; 479-491.
https://doi.org/10.3390/acoustics4020030
 
29- Said M A. El-Gohary O A. Effect of noise stress on cardiovascular system in adult male albino rat: implication of stress hormones, endothelial dysfunction and oxidative stress. General physiology and biophysics 2016; 35(3), 371-377.‏
https://doi.org/10.4149/gpb_2016003
PMid:27174896
 
30- Garg N. Gandhi V. Gupta N K. Impact of COVID-19 lockdown on ambient noise levels in seven metropolitan cities of India. Applied Acoustics 2022; 188: 108582.‏
https://doi.org/10.1016/j.apacoust.2021.108582
PMid:36530553 PMCid:PMC9746987
 
31- - Abo-Qudais S. Alhiary A. Statistical models for traffic noise at signalized intersections. Building and Environment 2007; 42(8), 2939-2948.‏
https://doi.org/10.1016/j.buildenv.2005.05.040
 
32- Gardziejczyk W. Motylewicz M. Noise level in the vicinity of signalized roundabouts. Transportation Research 2016;Part D, 46, 128-144
https://doi.org/10.1016/j.trd.2016.03.016
 
33- Eskandari R. Rassafi A A. Behnood H R. Modelling noise in an urban intersection (A case study). MCEJ 2020; 20 (3) :69-78